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Solitons in nonlinear optics I. 
A more accurate description of the 2n pulse 
in self-induced transparency 

J C Eilbeck, J D Gibbon, P J Caudrey and R K Bullough 
Department of Mathematics, UMIST, PO Box 88, Manchester M60 lQD, UK 

Received 16 April 1973 

Abstract. A more accurate description of the 2n pulse of self-induced transparency is ob- 
tained. This is an exact solution of an approximate form of the Maxwell-Bloch equations in 
which only backscattering is neglected; the equations are valid at densities less than about 
10ls atoms ~ m - ~ ,  At such densities the 271 sech pulse of McCall and Hahn remains a good 
approximation well into the picosecond range. The more accurate solution is chirped by a 
factor proportional to the square of the ratio of the spectral width of the pulse to its carrier 
wave frequency. The stability of this pulse solution and other N soliton solutions of the 
approximate Maxwell-Bloch equations is demonstrated. 

1. Introduction 

This is the first in a series of papers devoted to applications of multisoliton solutions of 
model equations in nonlinear optics in the two level atom approximation. The subject 
of nonlinear optical pulse propagation in a resonant medium has recently received an 
excellent review by Lamb (1971). At this time only 1, 2, and 3 soliton solutions of the 
equations describing a slowly varying envelope modulating a resonant optical carrier 
were known?. These solutions (except the one soliton solution) were not inhomogene- 
ously broadened, although Lamb (1972, 1973) has since reported a broadened form of 
the two soliton pulse. More recently we have published analytic expressions for N soliton 
‘sharp line’ solutions of these equations (Caudrey et a1 1973a) and the broadened 
version of these solutions has now been found (Caudrey et a1 1973b). These solutions 
are particularly relevant to the theory of self-induced transparency (SIT) first put forward 
by McCall and Hahn (1967, 1969). 

In this series of papers we use the N soliton solutions to develop a theory of SIT 
somewhat more general than has been available before. We consider not only the 
envelope equations taken by Lamb (1971) and others, but also the more basic equations 
of nonlinear optics for which (cf Caudrey et a1 1973b) we have multisoliton solutions. 
We restrict our attention throughout to the case of EM waves propagating in an attenu- 
ator, that is, all the atoms are initially in the lower state. 

In this first paper we consider the exact solutions of an approximate form of the 
semiclassical Maxwell-Bloch equations describing the interaction of a classical EM 
field with a dielectric of quantized two level atoms. The approximation considered 

7 Barnard (1973) has since extended the Biicklund transformation developed by Lamb to calculate a six 
soliton solution. 
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is equivalent to  the neglect of backscattering; i t  has been shown (Eilbeck 1972) that 
this approximation is good to within 1 % at densities of about 10l8 atoms cm-3 and the 
approximation improves in proportion at lower densities. For example in the Rb 
vapour studied by Gibbs and Slusher (1970) the density is about 10l2 atoms cm-3 and 
the approximation is good to  one part in lo8. This means we can safely use the equations 
to investigate other approximations like the slowly varying amplitude approximation 
or the rotating wave approximation providing these are of the order of one part in IO6 
or larger. 

We give in this paper the exact N soliton solution of these approximate Maxwell- 
Bloch equations. Then we show in particular that the two soliton solution generalizes 
the 27t (that is the one soliton) solution of the more approximate envelope theory of 
McCall and Hahn (1969) to  regions of high energy and shorter pulse duration where 
more approximate theories break down. The two soliton solution we use is a closed 
analytic expression made up of elementary functions so that we can easily find its 
approximations in various limits. It can be expanded as a power series in y ,  the ratio 
of the spectral width of the pulse to its carrier wave frequency. To zero order in y we 
regain the 27t hyperbolic secant pulse of McCall and Hahn modulating an on- or off- 
resonant carrier wave : the corrections of experimental interest such as chirping, modified 
pulse shape, etc, prove to be of order y 2  (as perhaps we should expect). Since y N 

for picosecond pulses the corrections to the slowly varying envelope approximation 
are of the order one part in IO6 well into the picosecond range. 

These figures agree with other approximate estimates (Bullough 1971, Bullough 
and Ahmad 1971), but with increasing experimental accuracy and peak power we have 
some hope of eventually observing some of the features of our generalized 277 pulse. 

We shall ignore homogeneous broadening on the grounds that effects significant 
at picosecond or shorter duration will not be affected by homogeneous broadening 
which is on a nanosecond scale. One advantage of the multisoliton approach is that the 
problem of inhomogeneous broadening becomes almost trivial (cf Caudrey et a1 1973b). 
Solely for simplicity of presentation we shall not write down every equation in broadened 
form : the key point is that once the sharp line solution is known the broadened results 
can be calculated by the simple prescription described below. In order to allow complete 
comparison with the original work of McCall and Hahn we give some results in the 
full broadened form. 

The result that inhomogeneous broadening has no special significance in the two 
level atom theories of SIT has been confirmed in a more practical manner by computer 
calculations (Estes et al 1970) and recent experimental work (Gibbs and Slusher 1972) 
which show no marked difference between broad and sharp line SIT. Our results here 
and elsewhere show that broadening only changes the individual velocity of each pulse 
without altering any other phenomena of physical interest. Of course inhomogeneous 
broadening plays an important part in other pulse phenomena such as photon echo 
(Lamb 1971). The area theorem of McCall and Hahn also depends on inhomogeneous 
broadening, but similar results can be obtained in the sharp line case, as demonstrated 
by Lamb. 

The paper is set out as follows : in Q 2 we review the basic equations of semiclassical 
nonlinear optics and introduce the so called reduced Maxwell-Bloch (RMB) equations 
valid at  low densities. The N soliton solution of these equations is described. In 5 3 
we show that the two soliton solution of the RMB equations gives a more accurate 
description of the 27t SIT pulse, and exhibit the corrections to  the theory of McCall and 
Hahn required at  shorter pulse lengths and higher energies. Finally in Q 4 we demonstrate 
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the stability of the N soliton solution of the RMB equations by the use of Liapunov 
techniques. 

2. Some nonlinear optics equations and N soliton solutions 

There are several different sets of nonlinear partial differential equations describing 
the propagation Of EM waves through a medium of two level atoms, each set being at a 
different level of approximation. These different sets are mathematically very similar, 
but each has a different physical interpretation. To add to the confusion, there is no 
universally accepted convention for naming these equations. We shall spend some time 
in the first three subsections reviewing the most important sets of equations, naming 
them, and discussing their similarities and differences. 

2.1.  The Maxwell-Bloch equations 

The most basic semiclassical equations governing the propagation of EM waves in a 
dielectric of two level atoms are the Maxwell wave equation 

E,,(x, t ) - ~ - ~ E , , ( x ,  t )  = 4 7 ~ c - ~ n p ( r , , ( x ,  t ,  0;)) 

r,(x, t ,  oj) = - o ; s ( x ,  t ,  w:) 

u,(x, t, w:) = - 2ph- ' E ( x ,  t)s(x, t ,  a;). 

(2.1) 

( 2 . 2 4  

(2.2b) 

(2.2c) 

Our notation, detailed below, follows that of Eilbeck and Bullough (1972). The 
components of the Bloch vector ( r ,  s, U )  are appropriate real combinations of the elements 
ofthe atomicdensity matrix. Each atom is assumed to be at a different resonant frequency 
w: with normalized probability g(w:), and the angular brackets in (2 .1)  are to be in- 
terpreted as an averaging procedure over all the possible frequencies, such that for any 
function F(oj) 

and the Bloch type equations 

s,(x, t ,  oj) = o:r(x ,  t ,  w:) + 2ph- ' E ( x ,  t)u(x, t ,  0:) 

The spread of the atomic resonance frequency described by g(o:) is the in- 
homogeneous broadening. It is an empirical description of the microscopic interactions 
and motions (like the motions causing Doppler broadening) which appear to  spread 
the levels of an isolated atom. In general g(o:) will be a function strongly peaked about 
os, the atomic frequency of an isolated two level atom. In the case where these effects 
are negligible, all the atoms have exactly the same resonant frequency os, and the 
function g(wj) becomes a Dirac delta function, g(wJ = 6(os-oi). In this case, which 
we call the 'sharp line case', we seefrom (2 .3)  that (F(oj)) = F ( o , )  and we can drop 
the primes in equation (2.2). The other parameters in equations (2 .1) ,  (2 .2)  have their 
usual meanings : p = exOs is the matrix element of the dipole operator, n is the atomic 
dipole density, and h o j  is the energy separation of the two levels. The subscripts x and t 
refer to partial differentiation with respect to the space and time coordinates. 

We shall refer to the system of coupled nonlinear partial differential equations (2.1) 
with (2 .2)  as the Maxwell-Bloch (MB) equations. It is assumed throughout that the 
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dielectric is initially in its ground state (an attenuator) so the boundary conditions are 
E,  r,  s -+ 0 , u  -, -1, as x + fa. 

2.2. The reduced Maxwell-Bloch equations 

It is possible to define a dimensionless constant a, which is a measure of the coupling 
between the electric field and the atoms : 

U, = 47cnp2(hw,)-'. (2.4) 

At low densities such that U, is much less than unity, the backscattered part of E(x,  t )  
can be neglected, and (2.1) can be reduced to an equation describing waves travelling 
to the right only. This can be proved by a simple application of characteristic theory 
(Eilbeck 1972). The reduced version of (2.1) is 

E,+c-'E, = -2nc- 'np(r , ) .  (2.5) 

For a typical value of p, 10- l 8  cgs units, (2.5) is a good approximation (to within 
1 %)a t  atomic densities n 5 10l8 cm-3. At lower densities the approximation improves 
proportionally so that at n 5 10l2 we are neglecting terms of order of one part in lo8. 
As we show below (and cf Bullough and Ahmad 1971), this approximation is implicit in 
the derivation of the SIT equations. We shall refer to the coupled equations (2.5) with 
(2.2) as the reduced Maxwell-Bloch (RMB) equations. A dimensionless form of the 
RMB equations is given in 5 2.5.  The main result of this paper is that exact solutions of 
the RMB equations exist which correspond to the 271 pulse of self-induced transparency. 
However in most treatments of SIT further approximations are made to describe the 
slowly varying encelope b ( x ,  t )  of the field modulating a resonant carrier wave. 

2.3. The self-induced transparency equations 

The approximations which give the envelope equations are : 
(i) rtt  = -m,2r. This is equivalent to assuming 2 p K ' E u  << w, r in the combination 

of ( 2 . 2 ~ )  and (2.2b)t. 
(ii) E(x,  t )  = h p -  ' b ( x ,  t )  cos @(x, t )  where O(x,  t )  = K,X - o,r + 4 ( x ,  r), in which the 

carrier wave is resonant, C K ,  = wS,  and b(x, t )  and 4(x, t )  are slowly varying functions 
of x (compared with U,-') and t (compared with ws-') such that second derivatives, etc, 
can be dropped. 

(iii) The rotating wave approximation, that is, neglect of higher harmonics of w,. 
Application of the approximations (iHiii) to either the MB or the RMB equations 

gives the most general resonant SIT equations (Lamb 1971): 

bx + c - '8, = U'( P(x, t ,  Am')) 

P,(x, t ,  Am') = b N  + (Am'+ 4,)Q 

N t ( x ,  t ,  Ao') = -bP 

( 2 . 6 ~ )  

(2.6b) 

( 2 . 6 ~ )  

-f We are assuming also that w, 5 0:. 



Solitons in nonlinear optics I 1341 

We have changed the frequency variable to Am‘ = w ~ - m ,  so that in this variable 
m 

(F(Am‘))  = J- F(Am’)g(Aw‘) dAo’. 

For the sharp line case g(Am’) = &Am’) and (F(Am’))  = F(0). In the rotating wave 
approximation N = U in (2.6). The constant or’ is defined by a’ = 2mp2m,(hc)- and 
the functions P and Q are defined by 

(2.8) 

At this stage we make the further consistent set of assumptions that (iv) the atoms 
are symmetrically broadened about m, so that g(Am’) = g(  - Am’), and (v) Q is an odd 
function of Am’. Under these assumptions (4x+c-14,)  is zero from (2.6). We now 
assume (vi) (4x+c-1q5r) = 0 implies that 4, and 4, are separately zero, and hence 4 
is a constant. Assumption (vi) is rather crucial and to our knowledge is not clearly 
made in the published literature. These assumptions lead to  the following form of the 
envelope equations : 

bx+C-l&, = cc‘(P) ( 2 . 9 ~ )  

P, = b N  + Am’Q (2.9b) 

N ,  = - b P  ( 2 . 9 ~ )  

Q ,  = -A.w‘P. (2.9d) 

In what follows we shall refer to the coupled equations (2.9) as the SIT equations. Note 
that this usage is not universal, for example Bullough and Ahmad (1971) apply the 
name SIT equations to those which we have called here the MB equations. 

The SIT equations (2.9) have been derived under the assumption that the carrier 
wave was resonant. We can relax this assumption for a very limited class of solutions 
of (2.9)? as follows. If the frequency of the carrier wave, mc, is m , + A w ,  we write $ in 
assumption (ii) above as &x, t )  = - Am,t + A K , ~  + $‘(x, t ) .  In equations ( 2 . 6 ~ )  we can 
take 4, and 4,  to  be constant, and hence set 4’equal t o  zero, if and only if ( Q ( x ,  t, Am‘)) 
is a constant multiple of d for all x, t .  Providing our solutions have this property (2.6e) 
becomes merely a dispersion relation for A K ,  and we can absorb Am, into Am‘ in equa- 
tions (2.6b) and ( 2 . 6 4  to get the SIT equations (2.9). This is the approach implied in the 
work of McCall and Hahn (1969) and formulated as such by Bullough (1971) and Bullough 
and Ahmad (1971). However it must be emphasized that the only solutions for which 
the assumption about the proportionality of d and ( Q )  is correct are the distortionless 
or travelling wave solutions, that is those of the type b ( x -  Vt ) .  One example of this 
type is the one soliton solution given below: the multisoliton solutions of the SIT equa- 
tions are not of this type and are only valid solutions for a strictly resonant carrier wave. 

The SIT equations (2.9) for the carrier wave envelope must not be confused with the 
MB and RMB equations for the electric jield. Nevertheless there is a close mathematical 
correspondence between the SIT equations (2.9) and the RMB equations (2.2), (2.5). We 
will make use of this correspondence after briefly reviewing some soliton solutions of 
the SIT equations. 

r(x, t )  = P(x,  t )  sin O(x, t )  + Q(x,  t )  cos O(x, t).  

2.4. Soliton solutions of the S I T  equations 

The solitary wave (soliton) solution of the SIT equations is the well known ‘27~’ pulse 
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with time area 277 (McCall and Hahn 1969): 

&(x, t )  = E ,  sech(o,t - K1x) 

w1 = )E l  
where 

and 

(2.1 Oa) 

(2.10b) 

(2.104 

Two and three soliton solutions of the sharp line SIT equations (Am' = 0) were 
first found by Lamb (1971) and the general N soliton solution in the sharp line case by 
the authors (Gibbon and Eilbeck 1972, Caudrey et a1 1973a). The N soliton solution 
for the inhomogeneously broadened SIT equations has now been found (Caudrey er a1 
1973b). I t  is 

(2.1 l a )  

(2.1 1 b)  

a 2  
b2(x, t )  = 4- In f(x, t )  

.f(x, t )  = detlM(x, 01 
where the N x N determinant Mi, has elements 

at2 

2(E.E.) 
' I  E,+ E j  

M . .  = - ' ' (exp(8,) + ( - I ) ' + ,  exp( - e,)} 

and 
ei = wit - K,X + d i  

( 2 . 1 2 ~ )  

(2.12b) 

w. I = ' E  2 i  (2.12c) 

(2.12d) 

The Ei  and di  are 2N arbitrary constants determining the amplitude and the phase, 
respectively, of the ith soliton. 

This completes our brief review of the SIT equations. We now proceed to the exact 
solutions of the RMB equations. These are more exact solutions of the physical problem 
since we do not make the approximations (i)-(vi) in assuming the RMB equations. 

2.5. Soliton solutions of the R M B  equations 

First we introduced a dimensionless form of the RMB equations by the transformation 
t' = oat, x' = o,c- 'x, E' = 2p0,  ' h -  ' E ,  (0:)' = oio; where o, is a typical atomic 
frequency such that (0:)' is of order unity. Applying this transformation to (2.2) and 
(2.5) we obtain, dropping the primes, 

E,  + E, = - cI,(r,(x, t ,  mi)) 

r,  = -wis 

( 2 . 1 3 ~ )  

(2.13b) 

S, = CO:?+ Eu (2.13c) 

U ,  = - Es. (2.134 

The dimensionless constant U, is defined in the same way as a, in equation (2.4) with 
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0, replacing 0,. That these equations are mathematically very similar to the SIT equa- 
tions can be seen by replacing U:, r ,  s, U by Am', Q, P ,  N .  The main difference is that r, 
appears inside the bracket in equation (2.13~) whereas in (2 .9~)  it is P which appears in 
the angular brackets. The sharp line equations are mathematically exactly equivalent. 
The proof of the N soliton solution of the equations in the sharp line case is given by 
Caudrey et al (1973~). A simple procedure for broadening the N soliton solution of 
the SIT equations is proved by Caudrey et ul (1973b). The procedure and proof for 
broadening the N soliton solution of the RMB equations is completely analogous and 
gives the following results : 

E ( x , t )  = E, sech +El  t - x  1 +  { ( ( (2.14) 

This is the RMB version of the single soliton solution of the full MB equations (2.1) and 
(2.2) found by Bullough and Ahmad (1971). These single pulse solutions are not yet of 
much experimental interest, as the resonant pulse (with +E,  = 0,) is ultra intense 
(1000 TW cm-,) and only of femtosecond duration?. However the two soliton solution 
is of more interest as we show below. 

The N soliton solution of (2.12) is 

E2(x ,  t) = 4? In f ( x ,  t) (2.15) 

where f is that defined in equations (2,11b), (2.12) except that equation (2.124 becomes 

a 2  

at 

- =  xi 1 + (  4a,w: ). 
mi ET + 4(0:)~ 

(2.16) 

In the next section we make much use of the two soliton solution of (2.13) which is 

E ,  sech 8, +E, sech 8, 
E(x,  t) = ___ (2.17) ( ~ ~ ~ ~ )  {l-B1,(tanh8, tanh8,-sech8, seche,)} 

where B, ,  = 2E,E,/(E: +E;). This has the same form as Lamb's two soliton solution 
of the SIT equations, as we would expect. Only the 8, are different : 

(2.18) 

In Q 3 we shall for simplicity mainly treat the sharp line version, in which case (2.18) 
becomes 

The broadened solution can be constructed 
and integrating as in equation (2.3). 

(2.19) 

easily by reverting to the frequency 0: 

3. The general self-induced transparency pulse 

The two soliton solution (2.17) of the RMB equations can be used to obtain a generaliza- 
tion of the self-induced transparency 2x pulse. With E, and E, real in (2.18) this solution 

t Another difficulty is that a real dielectric may not manage to accommodate fields of this extreme intensity! 
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represents the collision of two solitons. By taking E ,  and E ,  to be a pair of antihermitian 
complex constants we obtain a real solution describing a localized pulse with ‘internal’ 
oscillations, the exact analogue of the ‘On’ pulse solution of the SIT equations. Putting 
E ,  = -ET = Eo+2iw,,and6, = -6 ;  = 6,+i6,in(2.17)and(2.19)givesthefollowing 
exact solution of the RMB equations: 

COS 8, - y sin 8, tanh 8, 
1 + y 2  sin2 sech2 0, E(X, t )  = 2Eo sech 8, 

where 

8, = iEo(t-mex)+6R 

8, = w,(t - m,x) + 6, 

and y = 3E,/w,. The two refractive indices me and m, are given by 

4uaws{ E; + 4(w,2 + wf)) 

4craws{4(wf - wf) - E ; )  

m e =  I +  
E: + 8E;(w,2 + wf) + 16(wf - w:)’ 

m,= I +  
E: + 8E;(of +of) + 16(wf - 

‘ 

( 3 . 2 ~ )  

(3.2b) 

(3.34 

(3.3b) 

As in the 077 solution of the SIT envelope equations, the solution (3.1) to the RMB 
field equations has zero time area. Equations (3.1H3.3) take on a more familiar look 
when we choose the arbitrary constants E ,  and w, such that w, = w,, and 
y = E0/(2w,) << 1. Expanding (3.1) to zeroth order in y we have 

E(X, t )  = 2Eo sech[iE,{ f - x( 1 + 2Uaw,E, ’)} + 6R] COS(Wst - K,X + 6,). (3.4) 
In our dimensionless system of units, (3.4) is exactly the sharp line version of the 

277 SIT envelope solution (2.10) modulating a resonant carrier wave. The broadened 
version of (3.4) gives the broadened SIT solution in the same way as y + 0. (The factor 
of 2 and the different a arise from the different choice of units.) We thus have the sur- 
prising result that the 277 SIT pulse is the limiting case of the On RMB pulse. The ratio, 
y, of the spectral width of the pulse to its carrier wave frequency is 10- for a picosecond 
pulse, so (3.4) is a good approximation to (3.1) in this region. 

Given the low density condition, n 5 10” atoms ~ m - ~ ,  the exact solution (3.1) is 
valid up to much higher energies (and shorter pulse lengths), both on and off resonance, 
and is therefore the generalization of the 277 SIT pulse in those regions where the theory 
of McCall and Hahn is no longer valid. By expanding (3.1) in a power series in y we 
can estimate the order of magnitude of the corrections required in the picosecond and 
subpicosecond region. 

We have in equation (3.4) chosen 0, = w,. More generally 0, is an arbitrary con- 
stant, not necessarily equal to us, and can be interpreted as the frequency of the on- 
or off-resonance carrier wave. In what follows we shall not assume that o, is resonant. 

(3.54 

(3.5b) 

The form of (3.5) represents a 272 pulse which is ‘chirped’. Defining the chirping as 
Am,,, = q5t we find the chirp frequency Aw,,,/ws = y 2  sech’ OR. This chirping is of 
second order in y and is of order 

To first order in y we can write (3.1) as 

E(x,  t )  = 2E, sech 8, cos(8, + 4(x ,  t ) )  

# ( X ,  t )  = 7 tanh 8,. 

in the picosecond region. 
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A chirping of this magnitude is hardly of experimental interest, but is of theoretical 
interest since this small effect does not occur in more approximate theories (Matulic 
and Eberly 1972). 

It is possible to calculate the microscopic polarization ~ ( x ,  t )  and the atomic inver- 
sion u(x, t )  from our knowledge of E(x, t) .  To first order in y this gives the results one 
would expect from SIT theory, namely 

(3.6) r(x, t) = P(x, t) sin 9, + Q(x, t )  cos 9, 

where 
2Et 

~ ( A o ) '  +E: 
P(x, t )  = + tanh 9, sech 9, 

and 

2E; 
~ ( A o ) ~  +E; 

U ( X , t )  = - 1 +  sech2 9,. 

(3 .74  

(3.7b) 

(3.8) 

Here we are near resonance such that A 0  = w,- 0,. Broadening (3.7), (3.8) merely 
changes the e,, and Am + Am' = o:-wc.  The higher order corrections to (3.6H3.8) 
can easily be calculated but they are unimportant in the picosecond region. Perhaps 
the most interesting result is that the second harmonic terms in u(x, t )  appear only in 
these higher order terms. It would seem that, in the picosecond region at least, the 
assumptions (i)-(vi) used in deriving the SIT equations are extremely accurate. This 
result is rather surprising mathematically, considering the strong nonlinearity of the 
soliton solutions. 

The refractive indices of the envelope (me) and the carrier wave (m,) can be calculated 
in special limits from ( 3 . 3 4  and (3.3b). On resonance to first order in y we have the 
sharp line values 

me = 1 + 2 ~ , 0 , E ; ~  

m, = 1-~ccawS-'. 

(3 .94  

(3.9b) 

In our dimensionless units ( 3 . 9 ~ )  is the usual sharp line result for the SIT pulse, but 
(3.9b) is rather surprising since it shows the resonant carrier wave travels slightly faster 
than c. (Remember a, << 1.) Just off resonance we have in the sharp line case for small 
A 0  

2aa0s m e =  1 +  
~ ( A o ) ~  + E ;  

~ C ~ , W , ( ~ A O W ~ -  ' - ~ E $ C O ~ - ~ )  
m,= 1 +  

~ ( A o ) ~  +E: 

The broadened versions of (3.10) are 

(3. loa) 

(3.10b) 

(3.1 la)  

(3.11b) 
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The integration in (3.11) is over A d  = w:--w,. If g(Ao’) is symmetric the first 
term in the numerator in (3.11b) will not contribute and m, will be less than unity. 
Basically the same results were obtained by McCall and Hahn (1969). Our small correc- 
tion to  McCall and Hahn’s theory lies in the second term in the numerator in (3.11b) 
and in higher terms in y and Am’ given by the exact forms for me and m, in equations 
(3.3). 

Well off resonance, such that Aw >> E , ,  me and m, in equations (3.10) or (3.11) 
reduce to the usual refractive index and inverse group velocity of linear theory. This 
result was first derived in the SIT approximation by Courtens and Szoke (1968). 

4. Stability considerations 

Lamb (1971) showed that soliton solutions of the SIT equations were stable but not 
asymptotically stable in the Liapunov sense. We can easily show that our multisoliton 
solutions of the RMB equations have the same stability property by considering the 
conservation of energy equation. In fact it is simple to show that any solution of the 
RMB equations satisfying the boundary conditions given in 9 2.1 is stable. 

The conservation of energy equation follows from (2.13~1) on multiplication by E 
and the use of (2.13b, d) .  

a a 
-($E2 + c(,(w:(u + 1)))+-($2) = 0. 
at ax 

We have added the constant unity to U to make the hamiltonian density 

H(x, t) = +E* + cx,(o;(u + 1)) (4.2) 

positive definite. Because of our boundary conditions H -+ 0 as x + f 00. Next we 
define the Liapunov functional 

L(t) = J-+I H(x, t) dx. (4.3) 

In order to  consider the stability properties of a solution, we need the derivative L,. 
It follows from (4.2), (4.3) that 

dL 
- = ( E E ,  +a,(w:u,)) dx. dt (4.4) 

Using equations (2.13) it is simple to show that 

cw,(w:u,) = - E(E,  + E,)  (4.5) 

so 
+ m  dL 

- = -J- EE,dx 
dt m 

(4.6a) 

(4.6b) 

Since E -+ 0 as x -+ f 00 according to the boundary conditions, L, = 0. This means 
that any solution which satisfies the boundary conditions, and in particular our N 
soliton solution, is stable but not asymptotically stable, and small perturbations remain 
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finite. This kind of stability is the best we can expect in a frictionless system (Benjamin 
1972). Because of the mathematical correspondence between the SIT and the RMB 
equations the same results hold for the SIT equations. 
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